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Although cis,a's-undeca-l,5,8-trien-3-ol (the Z,Z isomer of 7) 
has been proposed as a biosynthetic precursor of the marine gamete 
attractants dictyopterene B (10), dictyopterene D (13), and the 
two C1)Hi6 tetraenes 11 and 12,1'2 7 has never been converted to 
these gamete attractants. We now disclose that such conversions 
can be executed in a highly efficient and stereospecific manner, 
especially with regard to the formation of 10. 

7 (mainly the Z,Z isomer) is now readily available by a 
modification and refinement (Scheme I) of the synthesis reported 
recently from this laboratory.3 Commercially available 1-pen-
ten-3-ol (1) was efficiently converted4 to a mixture of sulfides 2 
and 3, which was reductively lithiated5 with lithium p,p'-d\-
te«-butylbiphenylide6 (LDBB) followed by transmetalation with 
CeCl3 and quenching of the resulting allylcerium(III) ?j3 complex 
in situ with acrolein to afford 68% of a mixture of 4 and its trans 
isomer in a ratio of 89:11. The desired cis isomer 4 was separated 
from the trans isomer by flash chromatography using silica gel 
impregnated with a low concentration of AgNO3 to provide a 55% 
yield from 2 and 3. The alcohol 4 was subjected to the same 
reactions as 1 except that the intermediate allyllithium was 
warmed to -55 0C for 2 h in order to accomplish stereochemical 
equilibration, which was more sluggish than that of the allyl anion 
derived from 2 and 3. The product 7 was a mixture of Z,Z and 
Z,E isomers in a ratio of 87.5:12.5. It was assumed that separation 
of the isomers of 7, which was found to be very difficult at best, 
would be unnecessary since the internal double bond is destroyed 
during the ring closure to (i)-dictyopterene B (10) and that double 
bond that occurs in 7 in both cis and trans forms appears in the 
tetraenes 11 and 12 also as a mixture of cis and trans isomers. 
It should be noted that this route (four synthetic steps, 31% overall 
yield) to the putative biogenetic precursor 7 is the most efficient 
to date.2'7 

Dictyopterene B, the most abundant and interesting of these 
gamete attractants, was prepared from 7 in two steps. Treatment 
of the alkoxide derivative of 7 with tetraethyl pyrophosphate 
produced the phosphate ester 8.8 Upon addition of potassium 
bis(trimethylsilyl)amide to 8 and subsequent warming of the 
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reaction mixture, a remarkably stereospecific and efficient 
[l,2,(3),5]-elimination9 occurred to provide (i)-dictyopterene B 
(10) in 70% yield (Scheme II).10'" The only separable byproduct 
isolated from the reaction by chromatography was an oil consisting 
of a mixture of the two natural tetraenes 11 and 12. Interestingly, 
no production of the cis-disubstituted cyclopropane corresponding 
to 10 was formed since it is known12 to rearrange at room tem­
perature to dictyopterene D (13), which was not an observed 
product. Molecular models indicate that, in the transition state 
for the elimination leading to the cis-disubstituted cyclopropane, 
serious nonbonded interactions occur between the protons on the 
sp2 carbon atoms closest to the developing ring; the transition state 
leading to 10 appears to be strain free. 

Although SN2 displacements of phosphate groups appear to be 
very rare, there is a well-documented procedure for cyclopropane 
formation that involves displacement of this group by an enolate 
anion in a special system in which the phosphate ester is generated 
by a rearrangement.13 Allyl diethyl phosphates undergo nu-
cleophilic displacement of the phosphate group by ligands of 
aluminum, but this process appears to follow an SNI course.14 
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The exclusive formation of the cis.trans geometry of the con­
jugated diene in 10 suggests the following about the reaction 
mechanism: (1) The lack of change in the Z-olefin geometry (C89) 
of 8 signified that either elimination in the anion 9 to form the 
cyclopropane 10 occurs faster than stereochemical equilibration 
of the pentadienyl anion or the cis,trans configuration of the 
pentadienyl anion is thermodynamically favored. On the basis 
of studies by Schlosser15 of closely related systems, both of these 
possibilities seem likely. (2) The exclusive E geometry of the newly 
formed double bond in 10 may be attributed to steric interactions 
during deprotonation. Removal of that diallylic proton from 8 
which results in a pentadienyl anion (indicated in bold type) most 
likely occurs in 8b rather than 8a in the case of the predominant 
cis isomer and in 8d rather than 8c in the case of the trans isomer 
since the resulting transition states would be less crowded in each 
case. 8b and 8d would afford dictyopterene B (10) while 8a and 
8c would produce the cis,cis isomer of 10. 
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(±)-Dictyopterene B (10) was quantitatively converted to 
(i)-dictyopterene D (13)16-'7 through the known procedure of 
heating (±)-10 in a sealed tube for several hours (eq 1). 

When the methanesulfonate ester 14 of 7 was solvolyzed (path 
A, Scheme III) or treated with excess l,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU) (path B18), a mixture of tetraene gamete 
attractants 11 and 1219 was produced in 40% yield and no dic­
tyopterene B was detected. It is not surprising that 14 undergoes 
/^-elimination under essentially neutral solvolytic conditions 
whereas 9, in the presence of a strong base, undergoes depro­
tonation followed by an intramolecular SN2 reaction. The sol-
volysis of 14, bearing an excellent leaving group, presumably 
involves an El process in which the most acidic (/3) proton of the 
carbocationic intermediate is removed. 

The production of racemic dictyopterene B (10)20 and dic­
tyopterene D (13) in six and seven steps, respectively, in 16% 
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overall yield starting with commercial 1 is the most efficient 
synthesis to date.21 It is also truly unique as all previous syntheses 
utilize a Wittig reaction to generate C-C unsaturation in a ste-
reochemically controlled manner, usually in poor yield. More 
importantly, it has now been demonstrated for the first time that 
these gamete attractants can be prepared from their proposed1 

biogenetic precursor 7 in good yield. While the conditions used 
in the conversion of 7 to 10 do not resemble those in a biological 
system, our results render plausible a biosynthesis involving 
electrophilic enzymatic assistance to removal of a good leaving 
group such as a pyrophosphate with simultaneous enzymatic 
deprotonation of the developing cation.22 The [ 1,2,(3),5]-elim-
ination described here is apparently the only example of this rare 
type of ring closure in a noncyclic system9 in which the entropy 
of activation should be less favorable than in the few known cases. 
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Since the first demonstration by Kubas of the coordination of 
dihydrogen to a transition metal,1 numerous examples of such 
compounds have appeared in the literature.2 A large number 
of these resulted from the reinvestigation of complexes that had 
been previously assigned a polyhydride structure. This is the case 
for the polyhydrides FeH4(PR3)3, RuH4(PRj)3, and RuH6(PCy3)2, 
which were shown to adopt a d6 octahedral structure (FeH2-
(H2)(PR3),,

3-4 RuH2(H2)(PR3),,
3-5 and RuH2(H2)2(PCy3)2,

5 re-
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